skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de_Almeida, Danilo_Roberti Alves"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species. Data from Sentinel-2 optical imagery, ERA-5 climate data, SRTM-DEM imagery, and simulated GEDI data were selected for the characterization of diversity in four study areas. The integration of ancillary data can improve biodiversity metrics predictions. Random Forest (RF) regression models were suitable for estimating tree species diversity indices from remote sensing variables. From these models, we generated diversity index maps for the entire Cerrado using all GEDI data available in orbit. For all models, the structural metric Foliage Height Diversity (FHD) was selected; the Renormalized Difference Vegetation Index (RDVI) was also selected in all species diversity models. For the Shannon model, two GEDI variables were selected. Overall, the models indicated performances for species diversity ranging from (R2 = 0.24 to 0.56). In terms of RMSE%, the Shannon model had the lowest value among the diversity indices (31.98%). Our results suggested that the developed models are valuable tools for assessing species diversity in tropical savanna ecosystems, although each model can be chosen based on the objectives of a given study, the target amount of performance/error, and the availability of data. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Amazon forests are characterized by rich structural diversity. However, the influence of factors such as topography, soil attributes, and external disturbances on structural variability is not always well characterized, and traditional structural metrics may be inadequate to capture this type of complexity. While LiDAR offers expanded structural insights, traditional parameters used in LiDAR analysis, such as mean or maximum canopy height, are not always well directly linked to environmental variables like topography. Emerging approaches merge LiDAR with machine learning to uncover deeper structural complexities. However, work to date may fail to fully utilize the potential of fine-scale LiDAR information. Here we introduce a novel approach, leveraging 2D point cloud images derived from a profiling canopy LiDAR (PCL). The technique targets intricate details within LiDAR point clouds by using deep learning algorithms. With a dataset from the Central Amazon comprising 18 multitemporal transects of 450 m in length, our objective was to detect structural "fingerprints" of varied topographical types along a hillslope, comprising: Riparian, White-sand, and Plateau, and to detect any gradient of structural shifts based on terrain variations here represented by the height above the nearest drainage (HAND). The dataset was trained and tested using a leave-one-group-out approach (LOGO) in which, for each iteration, a complete 450 m multitemporal transect was excluded from training and tested after each iteration. The fast.ai platform and a ResNet-34 architecture, coupled with transfer learning, were used to perform a classification to distinguish between three topographical types. Furthermore, a hybrid model combining a Convolutional Autoencoder, and Partial Least Square (PLS) regression was designed to detect forest structural gradient correlations with HAND variation. Cross-validation achieved a promising high weighted F1 score of 0.83 to classify forests based on the topographical types. Additionally, a combined Convolutional Autoencoder and PLS regression revealed a strong correlation (R2 = 0.76) between actual and predicted HAND. Innovatively combining deep learning with ground-based PCL LiDAR, our study revealed unique Amazon Forest structures connected to topographic variation. Our findings underscore the transformative potential of such integrative approaches for investigating forest dynamics and promise a powerful new tool for understanding climate-related forest structure change. 
    more » « less